CHEMISTRY

PAPER - 1

(THEORY)
(Maximum marks: 70)
(Time allowed: Three hours)
(Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.)

All questions are compulsory

Question 1 is of 20 marks having four sub parts, all of which are compulsory. Question numbers 2 to 8 carry 2 marks each, with two questions having internal choice. Question numbers 9 to 15 carry 3 marks each, with two questions having an internal choice.

Question numbers 16 to 18 carry 5 marks each, with an internal choice.
All working, including rough work, should be done on the same sheet as, and adjacent to the rest of the answer.

The intended marks for questions or parts of questions are given in brackets [].
Balanced equations must be given wherever possible and diagrams where they are helpful.
When solving numerical problems, all essential working must be shown.
In working out problems, use the following data:

$$
\begin{gathered}
1 \mathrm{l} \mathrm{~atm}=1 \mathrm{dm} \mathrm{~m}^{3} \mathrm{~atm}=101.3 \mathrm{~J} .1 \text { Faraday }=96500 \text { coulombs. } \\
\text { Avogadro's number }=6.023 \times 10^{23} .
\end{gathered}
$$

Question 1

(a) Fill in the blanks by choosing the appropriate word/words from those given in the brackets:
(iodoform, volume, mass, haloform, gram equivalent, chloroform, carbylamine, $\mathrm{sp}^{3} \mathrm{~d}^{2}$, high, coke, $\mathrm{d}^{2} \mathrm{sp}^{3}$, low, gram mole, carbon monoxide)
(i) Equivalent conductivity is the conducting power of all the ions furnished by one \qquad of an electrolyte present in a definite \qquad of the solution.
(ii) Bleaching powder, on treatment with ethanol or acetone gives \qquad . This is an example of \qquad reaction.
(iii) Outer orbital complexes involve \qquad hybridization and are \qquad spin complexes.
(iv) Zinc oxide is reduced by \qquad at 1673 K to form zinc and
\qquad $-$
(b) Select the correct alternative from the choices given:
(i) The packing efficiency of simple cubic structure, body centered cubic structure and face centered cubic structure respectively is:
(1) $52 \cdot 4 \%, 74 \%, 68 \%$
(2) $74 \%, 68 \%, 52 \cdot 4 \%$
(3) $52 \cdot 4 \%, 68 \%, 74 \%$
(4) $68 \%, 74 \%, 52 \cdot 4 \%$
(ii) When acetone is treated with Grignard's reagent, followed by hydrolysis, the product formed is:
(1) Secondary alcohol
(2) Tertiary alcohol
(3) Primary alcohol
(4) Aldehyde
(iii) Which of the following electrolytes is least effective in causing flocculation of positively charged ferric hydroxide sol?
(1) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(2) $\mathrm{K}_{2} \mathrm{CrO}_{4}$
(3) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(4) KBr
(iv) On heating an aliphatic primary amine with chloroform and alcoholic potassium hydroxide, the organic compound formed is an:
(1) Alkyl isocyanide
(2) Alkanol
(3) Alkanal
(4) Alkyl cyanide
(c) Match the following:
(i) Silicon and phosphorous
(ii) Iodoform test
(iii) Arrhenius equation
(iv) Distorted octahedral structure
(a) Acetaldehyde
(b) Xenon hexafluoride
(c) n-type of semiconductors
(d) Frequency factor
(d) Answer the following questions:
(i) What is the common name of the polymer obtained by the polymerization of caprolactam? Is it addition polymer or condensation polymer?
(ii) Why Zn^{2+} ions are colourless while Ni^{2+} ions are green and Cu^{2+} ions are blue in colour?
(iii) The molar conductivity of $\mathrm{NaCl}, \mathrm{CH}_{3} \mathrm{COONa}$ and HCl at infinite dilution is $126.45,91.0$ and $426.16 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. Calculate the molar conductivity $\left(\lambda_{m}^{\infty}\right)$ for $\mathrm{CH}_{3} \mathrm{COOH}$ at infinite dilution.
(iv) Identify the compounds $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .

Question 2

(a) An element has atomic weight $93 \mathrm{~g} \mathrm{~mol}^{-1}$ and density $11.5 \mathrm{~g} \mathrm{~cm}^{-3}$. If the edge length of its unit cell is 300 pm , identify the type of unit cell.
$\left(\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23} \mathrm{~mol}^{-1}\right)$
OR
(b) Calculate the radius of copper atom. The atomic weight of copper is $63.55 \mathrm{~g} \mathrm{~mol}^{-1}$. It crystallises in face centered cubic lattice and has density of $8.93 \mathrm{~g} \mathrm{~cm}^{-3}$ at 298 K . $\left(\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23} \mathrm{~mol}^{-1}\right)$

Question 3

Complete and balance the following chemical equations:
(i)

(ii) $\mathrm{Cu}+\mathrm{HNO}_{3} \longrightarrow$ \qquad $+$ \qquad $+$ \qquad
dil.

Question 4

(i) Write the chemical equation for the reaction of glucose with bromine water.
(ii) Write the zwitter ion structure of glycine.

Question 5

(i) How do antiseptics differ from disinfectants?
(ii) Name a substance that can be used as an antiseptic as well as a disinfectant.

Question 6

An alloy of gold (Au) and cadmium (Cd) crystallises with a cubic structure in which gold atoms occupy the corners and cadmium atoms fit into the face centres. What is the formula of this alloy?

Question 7

(a) State reasons for the following:
(i) Ethylamine is soluble in water whereas aniline is insoluble in water.
(ii) Aliphatic amines are stronger bases than aromatic amines.

OR

(b) Complete and balance the following equations:
(i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{CH}_{3} \mathrm{COCl} \longrightarrow+{ }^{+}$
(ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{HNO}_{2} \longrightarrow+$ \qquad
\qquad

Question 8

Draw the structure of xenon tetrafluoride molecule. State the hybridisation of the central atom and the geometry of the molecule.

Question 9

(a) Calculate the emf and $\Delta \mathrm{G}$ for the given cell at $25^{\circ} \mathrm{C}$:

$$
C r_{(s)} / C r^{3+}(0.1 M) / / F e^{2+}(0.01 M) / F e_{(s)}
$$

Given: $E_{C r^{3} / C r}^{o}=-0.74 \mathrm{~V}, \quad E_{F e^{2+} / F e}^{o}=-0.44 \mathrm{~V}$

$$
\left(1 \mathrm{~F}=96500 \mathrm{C}, \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)
$$

OR

(b) Calculate the degree of dissociation (\propto) of acetic acid, if its molar conductivity (Λ_{m}) is $39.05 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(Given $\lambda_{\left(\mathrm{H}^{+}\right)}^{o}=349.6 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and $\lambda_{\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)}=40.95 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$)

Question 10

Name an important ore of silver. How is silver extracted from its sulphide ore? Give balanced chemical equations involved in the extraction of pure silver.

Question 11

How will you convert the following:
(i) Chlorobenzene to biphenyl
(ii) Propene to 1-bromopropane
(iii) Chlorobenzene to aniline

Question 12

Explain what is observed when:
(i) A beam of light is passed through a colloidal solution.
(ii) An electric current is passed through a colloidal solution.
(iii) An electrolyte $\left(\mathrm{AlCl}_{3}\right)$ is added to a colloidal solution of arsenious sulphide $\left(\mathrm{As}_{2} \mathrm{~S}_{3}\right)$.

Question 13
(a) How will you convert the following: (Give balanced equation)
(i) Benzoyl chloride to benzaldehyde.
(ii) Methyl chloride to acetic acid.
(iii) Acetic acid to methane.

OR

(b) A ketone $\mathrm{A}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$ which undergoes Iodoform reaction gives compound B on reduction. B on heating with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 443 K gives a compound C which forms ozonide D . D on hydrolysis with Zn dust gives only E . Identify the compounds A to E. Write the Iodoform reaction with compound A.

Question 14
A first order reaction is 50% completed in 30 minutes at 300 K and in 10 minutes at 320 K . Calculate the activation energy of the reaction. ($\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$).

Question 15

Explain the following:
(i) Transition metals and their compounds generally exhibit a paramagnetic behaviour.
(ii) There is an increase in density of elements from titanium ($\mathrm{Z}=22$) to copper ($\mathrm{Z}=29$) in the 3d series of transition elements.
(iii) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ acts as a powerful oxidising agent in acidic medium.
(a) (i) The elevation in boiling point when 0.30 g of acetic acid is dissolved in 100 g of benzene is $0.0633^{\circ} \mathrm{C}$. Calculate the molecular weight of acetic acid from this data. What conclusion can you draw about the molecular state of the solute in the solution?
(Given K_{b} for benzene $=2.53 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, at. wt. of $\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16$)
(ii) Determine the osmotic pressure of a solution prepared by dissolving 0.025 g of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in 2 litres of water at $25^{\circ} \mathrm{C}$, assuming that $\mathrm{K}_{2} \mathrm{SO}_{4}$ is completely dissociated.
($\mathrm{R}=0.0821 \mathrm{Lit-atm} \mathrm{~K}{ }^{-1} \mathrm{~mol}^{-1}$, mol. wt. of $\mathrm{K}_{2} \mathrm{SO}_{4}=174 \mathrm{~g} \mathrm{~mol}^{-1}$)

OR

(b) (i) An aqueous solution of a non-volatile solute freezes at 272.4 K , while pure water freezes at 273.0 K . Determine the following:
(Given $\mathrm{K}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}, \mathrm{~K}_{\mathrm{b}}=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$ and vapour pressure of water at $298 \mathrm{~K}=23.756 \mathrm{~mm}$ of Hg)
(1) The molality of solution
(2) Boiling point of solution
(3) The lowering of vapour pressure of water at 298 K
(ii) A solution containing 1.23 g of calcium nitrate in 10 g of water, boils at $100.975^{\circ} \mathrm{C}$ at 760 mm of Hg . Calculate the van't Hoff factor for the salt at this concentration.
$\left(\mathrm{K}_{\mathrm{b}}\right.$ for water $=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, mol. wt. of calcium nitrate $\left.=164 \mathrm{~g} \mathrm{~mol}^{-1}\right)$

Question 17

(a) (i) Write the IUPAC names of the following complexes:
(1) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$
(2) $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$
(3) $\mathrm{K}_{3}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
(ii) With reference to the coordination complex ion $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ answer the following: (at. no. of $\mathrm{Fe}=26$)
(1) Give the IUPAC name of the complex ion.
(2) What is the oxidation number of the central metal atom?
(3) How many unpaired electrons are there in the complex ion?
(4) State the type of hybridisation of the complex ion.

OR

(b) (i) Name of the type of isomerism exhibited by the following pairs of compounds:
(1) $\left[\mathrm{Co}(\mathrm{ONO})\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ and $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$
(2) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
(3) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
(ii) Using the valence bond approach, predict the shape, hybridisation and magnetic behaviour of $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$. (at. no, of $\mathrm{Ni}=28$)

Question 18

(a) (i) Give balanced chemical equations for the following reactions:
(1) Phenol is treated with ice cold alkaline solution of benzene diazonium chloride.
(2) Diethyl ether is treated with phosphorous pentachloride.
(3) Ethyl alcohol is treated with thionyl chloride.
(ii) Give one chemical test each to distinguish between the following pairs of compounds:
(1) Ethanol and dimethyl ether
(2) Propan-1-ol and propan-2-ol

OR
(b) (i) Write chemical equations to illustrate the following name reactions:
(1) Williamson's synthesis
(2) Esterification reaction
(3) Reimer-Tiemann reaction
(ii) Identify the compounds A and B in the given reactions:
(1)

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow[\Delta]{\mathrm{Cu}} A \xrightarrow{\text { dil. } \mathrm{NaOH}} B
$$

(2)

